___, ID ____

MTH 320 Abstract Algebra Fall 2016, 1–1

Final EXAM, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) (5 points). Is $(Q^*, .)$ isomorphic to (Z, +)? Explain

- No. $(Q^*, .)$ has a finite group, namely $\{1, -1\}$. So $(Q^*, .)$ is not cyclic (since every subgroup of a cyclic infinite group is cyclic). However, (Z, +) is cyclic. Thus $(Q^*, .)$ is not isomorphic to (Z, +).
- (ii) (5 points). Is $Z_3 \times Z_8$ isomorphic to $Z_6 \times Z_4$? Explain

 $Z_3 \times Z_8$ is isomorphic to Z_{24} and hence cyclic. Since $gcd(6,4) \neq 1$, $Z_6 \times Z_4$ is not cyclic.

(iii) (5 points). Let $n = 5^2 \cdot 7^3 \cdot 11$, and let $D = \{a \in (Z_n, +) \mid |a| = 77\}$. Find the cardinality of D.

Since Z_n is cyclic, we know Z_n has a unique subgroup of order 77, say $H = \langle a \rangle$. Hence if $b \in D$, then $\langle a \rangle = \langle b \rangle$. Thus $D = \{c \in H \mid |c| = 77\}$. We know that H has exactly $\phi(77) = \phi(7 \times 11) = 6 \times 10 = 60$ elements of order 77. Thus |D| = 60.

(iv) (5 points). It is easy to see that A_8 has an elements of order 15. With at most two lines, convince me that A_8 must have at least two distinct subgroups each is of order 15.

Let *H* be a subgroup of order 15. Since A_5 is simple, there exists $a \in A_5$ such that $a * H \neq H * a$. Thus $a * H * a^{-1} \neq H$. We know $a * H * a^{-1}$ is a subgroup of A_8 with 15 elements.

(v) (5 points). Is it possible to have infinitely many non-isomorphic groups such that each has 100 elements? Explain

It is clear that S_{100} has finitely many subgroups, each is of order 100. By Caley's Theorem a group with 100 elements is isomorphic to a subgroup of S_{100} . Thus there are finitely many non-isomorphic groups such that each has 100 elements.

(vi) (5 points). Give me an example of a group D that has an element w of order 2 and an element f of order 3, but D has no elements of order 6.

 S_3 has no elements of order 6. However $a = (1 \ 2)$ is of order 2 and $b = (1 \ 2 \ 3)$ is of order 3.

(vii) (8 points). Let $F : (Z, +) \to (Q^*, .)$ be a nontrivial group homomorphism such that F is not one-to-one. Find F(1), then find Image(F) and Ker(F).

Since F is not 1-1, $Ker(f) \neq \{0\}$. Hence Ker(F) = mZ for some $m \in Z^+$. Thus $Z/mZ = Z_m \simeq Image(F) < Q^*$. Thus Image(F) must be finite. However $(Q^*, .)$ has a unique finite subgroup $H = \{1, -1\}$. Thus $Image(F) = H \simeq Z_2$. Hence m = 2 and Ker(F) = 2Z. If F(1) = 1, then F(a) = 1 for every $a \in Z$ and thus F is the trivial group homomorphism, a contradiction. Hence F(1) = -1.

(viii) (8 points). Let F be a group with 21 elements such that F has a unique subgroup with 3 elements. Prove that F is isomorphic to Z_{21} .

We know F has a subgroup with 7 elements, say H, and it has a subgroup with 3 elements, say K. Since [H : F] = 3, and 3 is the minimum prime divisor of |F| = 21, we conclude that $H \triangleleft F$. Since K is unique, we conclude $K \triangleleft F$. It is clear that |HK| = 21 and $H \cap K = \{e\}$. Hence HK = F and $\mathbf{F} = F/(H \cap K) \simeq F/H \times F/K \simeq Z_3 \times Z_7 \simeq Z_{21}$ is cyclic.

(ix) (8 points). Let D be a group with 77 elements. Prove that either |C(D)| = 1 or D is abelian.

|C(D) = 1 or 7 or 11 or 77. If C(D) = 77, we are done. If C(D) = 7or11, then D/C(D) is cyclic and hence D is abelian.

(x) (8 points). Let D be a finite group. Assume H is a normal subgroup. Given |a * H| = n (the order of the element a * H is n in G/H) for some $a \in D$. Prove that D has an element of order n.

Let m = |a|. We know $n \mid m$. Thus m = nk. Let $f = a^k \in D$. We know $|f| = |a^k| = \frac{m}{acd(k,m)} = \frac{m}{k} = n$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com