Final EXAM, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) (5 points). Is $\left(Q^{*},.\right)$ isomorphic to $(Z,+)$? Explain
No. ($Q^{*},$.) has a finite group, namely $\{1,-1\}$. So $(Q *,$.$) is not cyclic (since every subgroup of a cyclic infinite$ group is cyclic). However, $(Z,+)$ is cyclic. Thus $\left(Q^{*},.\right)$ is not isomorphic to $(Z,+)$.
(ii) (5 points). Is $Z_{3} \times Z_{8}$ isomorphic to $Z_{6} \times Z_{4}$? Explain
$Z_{3} \times Z_{8}$ is isomorphic to Z_{24} and hence cyclic. Since $\operatorname{gcd}(6,4) \neq 1, Z_{6} \times Z_{4}$ is not cyclic.
(iii) (5 points) . Let $n=5^{2} .7^{3} .11$, and let $D=\left\{a \in\left(Z_{n},+\right)| | a \mid=77\right\}$. Find the cardinality of D.

Since Z_{n} is cyclic, we know Z_{n} has a unique subgroup of order 77, say $H=<a>$. Hence if $b \in D$, then $\langle a\rangle=\langle b\rangle$. Thus $D=\{c \in H| | c \mid=77\}$. We know that H has exactly $\phi(77)=\phi(7 \times 11)=6 \times 10=60$ elements of order 77. Thus $|D|=60$.
(iv) (5 points). It is easy to see that A_{8} has an elements of order 15 . With at most two lines, convince me that A_{8} must have at least two distinct subgroups each is of order 15.
Let H be a subgroup of order 15. Since A_{5} is simple, there exists $a \in A_{5}$ such that $a * H \neq H * a$. Thus $a * H * a^{-1} \neq H$. We know $a * H * a^{-1}$ is a subgroup of A_{8} with 15 elements .
(v) ($\mathbf{5}$ points). Is it possible to have infinitely many non-isomorphic groups such that each has 100 elements? Explain It is clear that S_{100} has finitely many subgroups, each is of order $\mathbf{1 0 0}$. By Caley's Theorem a group with 100 elements is isomorphic to a subgroup of S_{100}. Thus there are finitely many non-isomorphic groups such that each has 100 elements.
(vi) (5 points). Give me an example of a group D that has an element w of order 2 and an element f of order 3, but D has no elements of order 6.
S_{3} has no elements of order 6. However $a=\left(\begin{array}{ll}1 & 2\end{array}\right)$ is of order $\mathbf{2}$ and $b=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ is of order 3.
(vii) (8 points). Let $F:(Z,+) \rightarrow\left(Q^{*},.\right)$ be a nontrivial group homomorphism such that F is not one-to-one. Find $F(1)$, then find $\operatorname{Image}(F)$ and $\operatorname{Ker}(F)$.
Since F is not 1-1, $\operatorname{Ker}(f) \neq\{0\}$. Hence $\operatorname{Ker}(F)=m Z$ for some $m \in Z^{+}$. Thus $Z / m Z=Z_{m} \simeq \operatorname{Image}(F)<$ Q^{*}. Thus Image (F) must be finite. However $\left(Q^{*},.\right)$ has a unique finite subgroup $H=\{1,-1\}$. Thus $\operatorname{Image}(F)=H \simeq Z_{2}$. Hence $m=2$ and $\operatorname{Ker}(F)=2 Z$. If $F(1)=1$, then $F(a)=1$ for every $a \in Z$ and thus F is the trivial group homomorphism, a contradiction. Hence $F(1)=-1$.
(viii) ($\mathbf{8}$ points). Let F be a group with 21 elements such that F has a unique subgroup with 3 elements. Prove that F is isomorphic to Z_{21}.
We know F has a subgroup with 7 elements, say H, and it has a subgroup with 3 elements, say K. Since $[H: F]=3$, and 3 is the minimum prime divisor of $|F|=21$, we conclude that $H \triangleleft F$. Since K is unique, we conclude $K \triangleleft F$. It is clear that $|H K|=21$ and $H \cap K=\{e\}$. Hence $H K=F$ and $\mathbf{F}=F /(H \cap K) \simeq$ $F / H \times F / K \simeq Z_{3} \times Z_{7} \simeq Z_{21}$ is cyclic.
(ix) (8 points). Let D be a group with 77 elements. Prove that either $|C(D)|=1$ or D is abelian.
$\mid C(D)=1$ or 7 or 11 or 77. If $C(D)=77$, we are done. If $C(D)=7$ or 11 , then $D / C(D)$ is cyclic and hence D is abelian.
(x) (8 points). Let D be a finite group. Assume H is a normal subgroup. Given $|a * H|=n$ (the order of the element $a * H$ is n in $G / H)$ for some $a \in D$. Prove that D has an element of order n.
Let $m=|a|$. We know $n \mid m$. Thus $m=n k$. Let $f=a^{k} \in D$. We know $|f|=\left|a^{k}\right|=\frac{m}{g c d(k, m)}=\frac{m}{k}=n$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

